Responsible person: Dr. Michal GALLAY
 
 Technological equipment
Software licenses
  • 1 license of RiSCAN Pro for terrestrial lidar data processing
  • 1 license of RiPROCESS for lidar data processing
  • 1 license of RiAQUIRE ALS for lidar data processing
  • 1 license of RT Post-Process for RTK GNSS data processing
  • 1 license of ALMI for GNSS and lidar data integration
  • 1 license of SDCView
  • 1 license of NAVConfig
  • 1 license of ENVI for remote sensing data processing
  • 1 license of CaligeoPro by SPECIM for hyperspectral data processing
  • 1 license of WePilot3000 for mission planning and UAV control
  • 3 licenses of Agisoft Photoscan 1.1.6 Professional Edition
  • 1 license of PHOTOMOD v5.2 by RACURS
  • 1 academic license of the LAStools by rapidlasso for lidar data processing

Geospatial data 

  • aerial photogrammetric stereo imagery and orthoimagery for the Slovak Karst and Košice City,
  • airborne adn terrestrial lidar data for Slovak Karst and some parts of the Košice City
 Selected publications
  • RUSNÁK, M., KAŇUK, J., KIDOVÁ, A., ŠAŠAK, J., LEHOTSKÝ, J., PÖPPL, R., ŠUPINSKÝ, J. (2020). Channel and cut-bluff failure connectivity in a river system: Case study of the braided-wandering Belá River, Western Carpathians, Slovakia. Science of The Total Environment, 733, 139409.
  • HOFIERKA, J., GALLAY, M., ONAČILLOVÁ, K., HOFIERKA, J. Jr. (2020). Physically-based land surface temperature modeling in urban areas using a 3-D city model and multispectral satellite data. Urban Climate, 31, 100566.
  • ŠUPINSKÝ, J., KAŇUK, J., HOCHMUTH, Z., GALLAY, M. (2019). Detecting dynamics of cave floor ice with selective cloud-to-cloud approach. The Cryosphere, 13, 2835-2851.
  • ŠAŠAK, J., GALLAY, M., KAŇUK, J., HOFIERKA, J., MINÁR, J. (2019). Combined use of terrestrial laser scanning and UAV photogrammetry in mapping alpine terrain. Remote Sensing, 11 (18), 2154.
  • HOFIERKA, J., GALLAY, M., ŠAŠAK, J., BANDURA, P. (2018). Identification of karst sinkholes in a forested karst landscape using airborne laser scanning data and water flow analysis. Geomorphology, 308, 265-277. (PDF)
  • KAŇUK, J., GALLAY, M., ECK, C., ZGRAGGEN, C., DVORNÝ, E. (2018). Technical Report: Unmanned Helicopter Solution for Survey-Grade Lidar and Hyperspectral Mapping. Pure and Applied Geophysics. 175(9), 3357-3373 (PDF)
  • ONAČILLOVÁ, K., GALLAY, M. (2018).Spatio-temporal analysis of surface urban heat island based on LANDSAT ETM+ and OLI/TIRS imagery in the city of Košice, Slovakia. Carpathian Journal of Earth and Environmental Sciences, 13(2), 395 - 408.
  • GALLAY, M., ECK, C., ZGRAGGEN, C., KAŇUK, J., DVORNÝ, E. (2016). High resolution airborne laser scanning and hyperspectral imaging with a small uav platform. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B1, 823-827, doi:10.5194/isprs-archives-XLI-B1-823-2016, 2016. (PDF)
  • GALLAY, M., HOCHMUTH, Z., KAŇUK, J., HOFIERKA, J. (2016). Geomorphometric analysis of cave ceiling channels mapped with 3D terrestrial laser scanning, Hydrology and Earth System Sciences, 20, 1827-1849, (PDF)
scout_b-1-100.jpg
Unmanned aerial system Scout B1-100 with a laser scanner and hyperspectral camera.
 

 DSM_silica.jpg

Airborne lidar data can be used for generating a digital model of the landscape canopy. Th example shows a part of the Silica village in Slovak Karst acquired within the SPATIAL3D project.

 

landsat8_teplota_vKE.jpg

Satelite data of the LANDSAT8 mission can be used for calculating the surface temperature. The picture demonstrates that urban vegetation influences the ambient temperature in the city.

TLS.jpg

Laser scanning river bank erosion in the Tatra Mountains with the VZ-1000 scanner.